Table of Contents

Abstract i
List of Figures v
List of Tables vii
1. Introduction 1
 1.1 Volcán San Salvador's location 1
 1.2 Volcán San Salvador's geomorphology 4
 1.3 Previous studies of Volcán San Salvador’s deposits 4
 1.4 Natural hazards around San Salvador 5
2 Regional volcanism and tectonics 8
 2.1 Volcanism 8
 2.2 Central American tectonics 10
3 Geology and stratigraphy 12
 3.1 Geological map and relative ages 12
 3.2 Geology of basement rocks 16
 3.3 Volcán San Salvador’s central vent deposits 19
 3.3.1 San Salvador edifice and its collapse 19
 3.3.2 Boquerón edifice 25
 3.3.3 San Andrés Tuff and the collapse of Boquerón 29
 3.3.4 Activity inside of the Boquerón crater. 33
 3.4 Volcán San Salvador’s flank vent deposits 34
 3.4.1 Explosion craters and phreatomagmatic deposits 34
 3.4.1.a Laguna de Chamico 34
 3.4.1.b La Escondida tephra deposits 34
 3.4.1.c La Puerta de la Laguna crater and deposits 34
 3.4.1.d Relative age of explosion craters on Volcán San Salvador. 34
 3.4.2 Cinder cones and Strombolian deposits 48
 3.4.2.a Montaña Quezaltepeque 48
 3.4.2.b El Playón Complex 48
 3.4.2.c Relative age of cinder cones on Volcán San Salvador. 48
 3.4.3 Lava Flows 52
 3.4.3.a Petrography of flank vent lava flows 52
 3.4.3.b El Playón 1658 52
 3.4.3.c Relative ages of Volcán San Salvador’s flank vent lava flows 52
 3.4.4 Discussion of flank vent deposits 54
3.5 Quaternary Sediments 55
3.6 Composition of Volcán San Salvador deposits 56
3.7 Evolution of Volcán San Salvador 59
3.8 Discussion 63
 How is Volcán San Salvador similar to other Central American volcanoes?
 How is Volcán San Salvador unique?
 Implication of the volcano’s 1917 eruption.
4 Volcanic hazards of Volcán San Salvador

4.1 Hazardous phenomena at Volcán San Salvador
 4.1.1 Lava
 4.1.2 Tephra fall
 4.1.3 Pyroclastic flows and accompanying surges
 4.1.4 Pyroclastic surges from explosion craters or a
 pyroclastic base surge
 4.1.5 Volcanic gases
 4.1.6 Lahars or debris flows
 4.1.7 Avalanches

4.2 Future eruptive activity
 4.2.1 Strombolian eruptions along the N40W fault trend
 4.2.2 Phreatomagmatic eruptions from a flank vent
 4.2.3 Strombolian/ phreatomagmatic edifice construction.
 4.2.4 Large scale eruptions of Volcán San Salvador’s
 central vent

4.3 Hazard maps for Volcán San Salvador
 4.3.1 Pyroclastic flow, ballistics, and lava flow hazard zone
 for the central vent of Volcán San Salvador
 4.3.2 Tephra hazard zone for the central vent of
 Volcán San Salvador
 4.3.3 Avalanche and debris flow hazard zones for
 Volcán San Salvador
 4.3.4 Regions of risk from flank vent hazards of Volcán
 San Salvador
 4.3.5 Lava flow, pyroclastic surge, and tephra hazard zones
 for flank vents eruptions of Volcán San Salvador

4.4 Conclusions

Bibliography

Appendix A: Sample location list
Appendix B: Stratigraphic section location list and map
Appendix C: Geochemical data
Appendix D: Stratigraphic trends
List of Figures

1.1 Regional map of El Salvador. 2
1.2 Map of the active volcanoes along the Central American volcanic belt. 3
1.3 Early Map of Volcán San Salvador by Meyer-Abich (1954). 5
2.1 Map of Tertiary volcanic rock formations in northern Central America. 8
2.2 Map of volcanic front stratovolcanoes and calderas. 9
2.3 Map of El Salvador’s volcanic centers and the Median Trough. 11
3.1 Map of Volcán San Salvador’s eruptive periods. 13
3.2 Geological map of Volcán San Salvador. 14
3.3 Table of regional stratigraphic units and Volcán San Salvador deposits. 15
3.4. Cross-sectional diagram of Volcán San Salvador. 19
3.5 San Salvador’s crater rim imposed on a Landsat satellite near infrared image. 18
3.6 (a) TAS diagram of San Salvador lavas, G1’s pumice fall, and pyroclastic flow. 20
3.6 (b) Andesite classification diagram of San Salvador lavas. 20
3.7 Compiled stratigraphic section of Volcán San Salvador’s central vent deposits. 22
3.8 Isopach map of San Salvador’s, G1 fall deposit. 23
3.9 Extent of the Boquerón lavas imposed on a Landsat satellite near infrared image. 27
3.10 (a) TAS diagram of Boquerón lavas. 28
3.10 (b) Andesite classification diagram of Boquerón lavas. 28
3.11 Isopach map of the San Andrés fall deposit and pyroclastic flow. 32
3.12 Map of Volcán San Salvador’s flank vent explosion craters. 35
3.13 Map of Volcán San Salvador’s flank vent cinder cones. 35
3.14 Map of Volcán San Salvador’s flank vent lava flows. 36
3.15 Schematic cross section of a subsurface hydrovolcanic eruption. 37
3.16 Andesite classification diagram of Volcán San Salvador’s flank vents deposits. 38
3.17 Stratigraphic section of Laguna de Chamico. 41
3.18 Stratigraphic section of La Escondida Crater. 42
3.19 Stratigraphic section of Puerta de la Laguna. 45
3.20 Variation diagram comparing compositions of Volcán San Salvador rocks. 59
3.21 Schematic diagram of Volcán San Salvador’s evolution.

3.22 Variation of edifice height and crustal thickness along the Central American volcanic front.

3.22 Plot of vent elevation and SiO₂ (%) concentration of all flank deposits.

3.23. Plot of vent elevation and SiO₂ (%) concentration of N40W flanking cinder cone and lava flows.

4.1 Cross-sectional diagram of a blocky lava flow.

4.2 Map of the 1658 El Playón deposits.

4.3 Photograph of a phreatomagmatic eruption in the Azores.

4.4 Map of the San Andrés event deposits.

4.5 Hazard zone map for pyroclastic flows, lava flows, and volcanic bombs from Volcán San Salvador’s central vent.

4.6 Hazard zone map for avalanches and lahars near Volcán San Salvador.

4.7 Hazard zone map for tephra from Volcán San Salvador’s central vent.

4.8 Regions of risk map for Volcán San Salvador’s flank vents.

4.9 Diagram of proposed hazard zones for Volcán San Salvador’s flank vents.

4.10 Hazard zones map for Volcán San Salvador’s flank vents.
List of Tables

1. List of Stratovolcanoes and rhyo-dacitic calderas 10
2. Geochronological dates used in the study 15
3. Distances of explosion craters from center of Boquerón edifice. 47
4. Data on flanking explosion craters 47
5. Data on cinder cones. 51
6. Data on flanking lava flows 54
1.0 Introduction
Volcán San Salvador has a long history of hazardous volcanism and is located next to San Salvador, El Salvador’s capital city with more than two million inhabitants. Four generations have passed without notable volcanism at the volcano, leaving people unaware of the hazards that tower above them. The principal goal of this work is to inform people about the volcanic risks at Volcán San Salvador. There are four objectives; 1) to describe its geologic features, 2) to provide an eruption history of Volcán San Salvador, 3) to assess its volcanic hazards, and 4) to create hazard-zonation maps for the region. These results are based on previous work, new field observations, satellite image/aerial photo interpretation, geochemical analysis, and new age dating. This work is part of to a cooperative effort to better understand and mitigate hazards of El Salvador’s volcanoes.

1.1 Volcán San Salvador’s location
Like other capital cities in Central America, San Salvador is the largest city and the economic heart of El Salvador. It is located 7 km directly down-slope from the towering (1893m) volcano, which bears its name and has a history of devastating eruptions. The greater San Salvador region (which includes the upper slopes of Volcano San Salvador) produces much of the country’s coffee, sugar cane and maize (Figure 1.1). San Salvador has a population density of 2,067 inhabitants/km² and produces 70% of the country’s GNP (República de El Salvador website, 1998).

Volcán San Salvador is part of the active Central American Volcanic Belt (CAVB) and the Pacific “Ring of Fire.” The CAVB includes a 1100 km long chain of 41 active volcanoes, which extends from Guatemala to Panama (Simkin and Siebert, 1994) (Figure 1.2). Volcán San Salvador sits above a convergent boundary between the Caribbean and Cocos plates (Molnar and Sykes, 1969).
Figure 1.1: Regional map of Central America and El Salvador. The location of Volcán San Salvador, Largo de Ilopango, and Coatepeque are shown in red.
The convergent plate boundary is formed by the underthrusting of the Cocos plate and overriding the Caribbean plate along the Middle America Trench (Burbach et al., 1984). El Salvador’s nine active volcanoes are located in a east-west trough between two older mountain ranges. Some of the closest eruptive centers to Volcán San Salvador are calderas; Ilopango, 28 km to the east, and Coatepeque, 33 km to the west (Figure 1.1). Their ancient silicic deposits are a valuable aid in the interpretation of Volcán San Salvador’s stratigraphy (Rose et al., 1998).

Figure 1.2 Map of the active volcanoes along the Central America Volcanic Belt

SS = Volcán San Salvador, SM = Santa María, FU = Fuego, S-I = Santa Ana-Izalco, CN = Cerro Negro. Modified from Carr and Stoiber, 1990
1.2 Volcán San Salvador’s geomorphology

Volcán San Salvador is composed of two edifices and numerous flank deposits (Meyer Abich, 1954). Boquerón, a well defined edifice with a circular crater (13.736 N, 89.286 W) 1600m in diameter, is inside remains of a larger older edifice, San Salvador. The highest part of Boquerón is the southern rim at 1893 m. El Picacho, (1959 m, Figure 1.3) northeast of Boquerón is the highest point of an older crater (approximately 5km in diameter). El Jabalí, (~1400 m) a mountain north-west of Boquerón, is also a remnant of the rim of this older crater. All three summits (Boquerón, Picacho, and Jabalí) are part of the San Salvador volcanic complex, as are a number of flanking monogenetic lava flows, cinder cones and explosion craters (Figure 1.3).

1.4 Previous studies of Volcán San Salvador’s deposits

Volcán San Salvador’s deposits have not been studied in detail. Although geologists have studied some of the volcano’s deposits or the volcano in a larger context no one has attempted to study the entire volcano’s history until now. Meyer-Abich (1954) did the first reconnaissance mapping of Volcán San Salvador (Figure 1.3). Schidt-Thome (1975) mapped undated lava flows from Volcán San Salvador under deposits of ash from Ilopango Caldera (Figure 1.1, located within L. Ilopango) within the city of San Salvador. Hart (1983) described the extent of two ashfalls from flank vents and an ashfall from Boquerón, San Andrés Tuff (SAT) in the context of archeological sites in the eastern Zapatitán valley. Miller and Conyers (1994) studied the phreatomagmatic deposits of a flank vent that covered the Hoya de Cerén archeological site. Fairbrothers et al. (1978) studied a sequence of andesitic lavas from Boquerón that represents approximately one third of the volcano’s history.
1.5 Natural hazards around San Salvador

Historic records of volcanic and local earthquake activity goes back to the Spanish Conquest in 1524 A.D. There have been three eruptions at Volcán San Salvador, in the last 470 years. These events have consisted of Strombolian flank eruptions and lava flows. Larde and Lardin (1948)
wrote historical accounts of the eruptions of El Playón (in 1658) and of the 1917, flank and summit eruptions. Two early authors (Palacio and Ximenez) mentioned pre-20th century eruptions near El Playón in their memoirs (Larde y Lardin, 1948). Unfortunately these works are no longer available for review. Larde and Lardin, (1948) reported that Palacio visited a fresh lava flow near what is now El Playón in 1575 and than Ximenez described an eruption that began in August 9th, 1658, in the same region; El Playón. (Larde and Lardin, 1948)

The most recent eruption of Volcán San Salvador occurred in 1917. Thirty minutes after a devastating earthquake, steam billowed from the Boquerón Crater (Larde, 1956). At about the same time at least four fissures opened up along a N40W trending fault on the NW flank of the volcano. Within a month the former crater lake (then approximately 80 m deep) boiled off and was replaced by a cinder cone called Boqueroncito. The eruption lasted two months, Boqueroncito grew 30 m high and approximately 0.9 km3 of lava (El Norte flow) was extruded on the NW flank.

After the 1917 eruption, fumarolic activity continued until the late 1970's (Fairbrothers et al., 1978). But there was no fumarolic activity present in 1996. This long period of eruptive repose may falsely suggest that a volcanic eruption is less hazardous than the more frequent regional earthquakes and landslides. Salvadoreans are keenly aware of the danger of earthquakes, since the majority of them have lived through one. Yet, very few of them were alive during the last eruption of Volcán San Salvador in 1917.

Non-magmatic earthquakes and landslides have been much more frequent and devastating than eruptions from Volcán San Salvador. The most destructive earthquakes in the region are the upper
crustal or shallow volcanic front type (White and Harlow, 1993). These earthquakes have destroyed the capital 11 times in the last 375 years. The most recent of these was in 1986 (Harlow et al., 1993).

Landslides commonly occur in this region because of thick, unconsolidated tephras, which are exposed by construction, and then triggered by earthquakes or after rainstorms. The last deadly landslide took place on El Picacho in 1992 (Finnson, 1994).

The last few centuries may not be a fair sampling of the potential hazards which the volcano really presents to El Salvador. Salvadoreans only know about the last two historic eruptions of Volcán San Salvador. These historic eruptions were not deadly and may lead to the false assumption that the volcano is a nuisance, rather than a real threat. Nevertheless, as this thesis will show, Volcán San Salvador is indeed a dangerous volcano with a long history of violent eruptions. In fact, the last deadly eruption likely took place around 800 years BP, and if it occurred today would kill thousands of people and cripple national transportation. Volcán San Salvador’s periods of tranquility deceive Salvadoreans about its true hazardous nature.