Summary

There is huge amount of literature available on landslides. This because landslides is a classical problem that researchers and practising geologists and engineers have dealt with for a long time all over the world.

This report contains a selection of reference material which is assumed to be useful for SNET in their future work. It includes a compilation of papers on landslides prepared by NGI’s staff, an overview of landslide literature in the NGI library in Oslo, a summary of references to articles on rainfall as a trigger for landslides, including material on lahars, relevant web sites and a list of what is considered as classical textbooks on landslides.

A CD with a selection of NGI landslide related papers in full text is attached to the report.
Contents

1 INTRODUCTION..4

Appendices

Appendix A NGI publications on landslides
Appendix B Landslide literature in the NGI library
Appendix C Literature on lahars
Appendix D List of references for papers on “rainfall as trigger for Landslides”
Appendix E Classical landslide text books
Appendix F Useful web sites

Attachment CD with a selection of NGI publications in full text

Review and reference document
1 INTRODUCTION

In El Salvador, landslides are typically triggered during heavy rainstorms, either in connection with hurricanes or with local rainshowers originated during the afternoon in the rainy season. Earthquake is another trigger as well as special lahars in connection with outburst from a volcano.

The project has been sponsored by the Norwegian Ministry of Foreign Affairs with the aim of strengthening the competence within the field of landslides at SNET. This institute, acting as the national centre of competence in natural hazards, is an important actor in reducing the risk for new disasters by implementation of preventive measures.

The ongoing institutional cooperation program between SNET and NGI consists of the following elements:

- Mapping of the rockfall/debris flow hazard in the slopes of the San Vicente Volcano
- Real time monitoring of the landslide hazards and implementation of an early warning system
- Case studies of landslide as training for SNET’s staff
- Improvements in the building codes accounting for the rather high landslide risk.
Appendix A - NGI Publications on Landslides

CONTENTS

A1 NGI PUBLICATIONS ON LANDSLIDES ... 2
A1 NGI PUBLICATIONS ON LANDSLIDES

Andersen, K.H. (1972). Skredet i Kimola fletningskanal i Finland (Clay slide in Kimola canal in Finland). Norwegian Geotechnical Institute, Oslo. Publication, 92, pp. 7-10, 73.

Appendix B - Landslide Literature in the NGI Library

CONTENTS

B1 TIDSSKRIFTER .. 2
B2 REFERENCES ... 2
B1 TIDSSKRIFTER

- Bulletin of Engineering Geology & the Environment – ISSN 1435-9529
- Canadian Geotechnical Journal – ISSN 0008-3674
- Earthquake Spectra – ISSN 8755-2930
- Engineering Geology – ISSN 0013-7952
- Int J of Rock Mechanics & Mining Sciences – ISSN 1365-1609
- J of Natural Disaster Science, Japan
- Landslide News, Japan
- Natural Hazards Review ASCE – ISSN 1527-6988
- Quarterly J of Engineering Geology and Hydrogeology – ISSN 0470-9236
- Soil Dynamics & Earthquake Engineering – ISSN 0267-7261
- Wildbach- und Lawinenverbau, Austria

B2 REFERENCES

Analysis and design of retaining structures against earthquakes: proceedings of sessions in conjunction with the ASCE National Convention in Washington, DC... 1996 / sponsored by the Soil Dynamics Committee of the Geo-Institute of the American Society of Civil Engineers *edited by Shamsrer Prakash. - New York : ASCE, 1996. - VII, 136s. : ill. - (Geotechnical special publication * No. 60); (ASCE GSP * 60) ISBN: 0-7844-0206-X

Landslides under static and dynamic conditions : analysis, monitoring and mitigation : proceedings of sessions in conjunction with the ASCE Convention in San Diego, California ... 1995 / sponsored by the Geotechnical Engineering Division of the American Society of Civil Engineers *edited by David K. Keefer and Carlton L. Ho. - New York : ASCE, 1995. - VII, 115s.: ill. - (Geotechnical special publication * No. 52); (ASCE GSP * 52) ISBN: 0-7844-0118-7.

Literature on Landslides

Appendix B

Landslide dams : processes, risk and mitigation : proceedings of a session in conjunction with the ASCE Convention in Seattle, Washington ... 1986 / sponsored by the Geotechnical Engineering Division of the American Society of Civil Engineers * edited by Robert L. Schuster. - New York : ASCE, 1986. - VII, 164s. : ill. - (Geotechnical special publication * No. 03); (ASCE GSP * 03) ISBN: 0-87262-524-9

Appendix C - Literature on Lahars
<table>
<thead>
<tr>
<th>No.</th>
<th>Title</th>
<th>Author(s)</th>
<th>Shear / stability</th>
<th>Unsat. pyroclastic soil</th>
<th>Erosion</th>
<th>Laboratory tests</th>
<th>Grain size distribution</th>
<th>Initiation of slide</th>
<th>Theor./empiric flow study</th>
<th>Case study</th>
<th>Model testing</th>
<th>Hydrology</th>
<th>Rainfall</th>
<th>Gen. landslides / risk</th>
<th>Volcano collapse</th>
<th>Other</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-1a</td>
<td>Structural analysis of the Casita slump: Origin, hazards and comparison with nearby volcanoes</td>
<td>van Wyk deVries, B., N. Kerle, and Jean-Luc Froger</td>
<td></td>
</tr>
<tr>
<td>1-1b</td>
<td>Landslide and lahar mapping using ERS radar images....</td>
<td>Froger, J.-L., B. van Wyk de Vries, Souvignet, T. Souriot & B. Malengreau</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-2</td>
<td>Volcanic landslides, debris avalanches, and debris flows in Nicaragua resulting from Hurricane Mitch, October-November 1998</td>
<td>Scott, K. M.</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-3</td>
<td>Mechanical behaviour of unsaturated pyroclastic soils</td>
<td>Evangelista, A. and Anna Scotto di Santolo</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>1-4</td>
<td>Susceptibility of loose pyroclastic soils to static liquefaction – some preliminary data</td>
<td>Olivares, L. and Picarelli, L.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-5</td>
<td>Landslides in Rio de Janeiro: Anthropogenic and weather effects</td>
<td>Amaral, C., Araruna, J. and Vargas jr., Euripides</td>
<td></td>
</tr>
<tr>
<td>1-6</td>
<td>Risk assessment and uncertainties</td>
<td>Einstein, H. H. and Karam, K. S.</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Overview</td>
</tr>
<tr>
<td>1-7</td>
<td>Joint disaster response and recovery mission to Central America as a follow-up to Hurricane Mitch</td>
<td>UN development programme et al.</td>
<td></td>
<td>(x)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-8</td>
<td>Landslides activation from earthquake motions</td>
<td>Konstantinov, B.K., K.A. Angelov, A.V. Lakov & S.B. Stojnev</td>
<td></td>
<td>X</td>
<td></td>
<td>uninteresting for us</td>
</tr>
<tr>
<td>1-9</td>
<td>Prediction of rainfall-triggered landslides in Korea</td>
<td>Kim, S.K., W.P. Hong and Y.M. Kim</td>
<td></td>
</tr>
<tr>
<td>1-10</td>
<td>Prob. analysis of rain-related occurrence and revival of landslides in Yunyang-Fengjie area in East Sichuan</td>
<td>Nianxue, Z. and Sheng Zhipin</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-11</td>
<td>Landslide in recent Roodbar earthquake in Iran</td>
<td>Anvar, S.A., L. Behpoor & A. Ghahramani</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Earthquake</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-12</td>
<td>Earthquake-induced landslides in the island of Ischia</td>
<td>Guadagno, F.M. and R. Mele</td>
<td></td>
<td>Earthquake</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-13</td>
<td>Some aspects of Colombian landslide research</td>
<td>Ojeda, J. and E. Velasqué</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-14</td>
<td>Erosion induced landslides in tropical environments</td>
<td>Suárez, J.</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-15</td>
<td>A discussion of the physical parameters that control the flow of natural landslides.</td>
<td>Irgens, F. and H. Norem</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No.</td>
<td>Title</td>
<td>Author(s)</td>
<td>Shear strength / stability</td>
<td>Unsaturated/pyroclastic soil</td>
<td>Erosion</td>
<td>Laboratory tests</td>
<td>Grain size distribution</td>
<td>Initiation of slide</td>
<td>Theor./empiric flow study</td>
<td>Case study</td>
<td>Model testing</td>
<td>Hydrology</td>
<td>Rainfall</td>
<td>General, landslides risk</td>
<td>Volcano collapse</td>
<td>Other</td>
<td>Comment</td>
</tr>
<tr>
<td>-----</td>
<td>---</td>
<td>---</td>
<td>---------------------------</td>
<td>-------------------------------</td>
<td>---------</td>
<td>------------------</td>
<td>-------------------------</td>
<td>---------------------</td>
<td>--------------------------</td>
<td>------------</td>
<td>---------------</td>
<td>-----------</td>
<td>---------</td>
<td>--------------------------</td>
<td>------------------</td>
<td>-------</td>
<td>---------</td>
</tr>
<tr>
<td>1-16</td>
<td>Enigmatic features and mechanism of debris flows and lahar</td>
<td>Ter-Stepanian, G.</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>1-17</td>
<td>Landslide hazard at the San Salvador volcano, El Salvador</td>
<td>Finnson, H., C. Bäcklin and A. Bodare</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Block transp. Very relevant!</td>
</tr>
<tr>
<td>1-18</td>
<td>Toward landslide risk assessment in practice</td>
<td>Morgenstern, N. R.</td>
<td></td>
</tr>
<tr>
<td>1-19</td>
<td>Stability investigation and preventive works design for old fill slopes in Hong Kong</td>
<td>Yim, K.P. and C.K. Siu (x)</td>
<td></td>
<td>Only types of unstability</td>
</tr>
<tr>
<td>1-20</td>
<td>Concepts of risk-based decision making with emphasis on geotechnical engineering and slope hazards</td>
<td>Schuster, R.L.</td>
<td></td>
</tr>
<tr>
<td>1-21</td>
<td>Lahars: Volcano-hyrdrologic events and deposition in the debris flow – hyperconcentrated flow continuum</td>
<td>Smith. G. A. and D. R. Lowe (x)</td>
<td></td>
<td>Verbal descript. Useful</td>
</tr>
<tr>
<td>1-22</td>
<td>Natural hazard landslide hazard management + Natural hazard management + A brief on natural hazards management in Canada</td>
<td>Lacasse, S., Lacasse, S. Morgenstern, N.R.</td>
<td></td>
</tr>
<tr>
<td>1-23</td>
<td>Factors affecting rainfall-induced landslides in laboratory flume tests</td>
<td>Wang. G. and K. Sassa</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-24</td>
<td>Failure of volcano slopes</td>
<td>Voight, B. and D. Elsworth</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>1-25</td>
<td>Role of apparent cohesion in the stability of Dominican allophane soil slopes</td>
<td>Rao, S. M.</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>1-26</td>
<td>Highway-related landslides in mountainous volcanic terrain: An example from West-Central Utah</td>
<td>Degraff, J. V and C. G. Cunningham</td>
<td></td>
<td>Not very interesting</td>
</tr>
<tr>
<td>1-27</td>
<td>Volcanic soil properties in Dominica, West Indies</td>
<td>Rouse.W.C. and R.P.D. Walsh</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>1-29</td>
<td>Slope safety for all</td>
<td>Hong Kong GPP</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>1-30</td>
<td>New geological and hydrogeological implications of the resistivity distribution inferred from audiomagnetotellurics….</td>
<td>Courteaud, M., M. Ritz, R. Robineau,J.,Join,J.Coudray (x)</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>1-31</td>
<td>Land-use changes affecting classification of a Costa Rican soil</td>
<td>Wielemaker, W.G. and A.L.E. Lansu</td>
<td></td>
<td>Inceptisol to Ultisol.....</td>
</tr>
<tr>
<td>No.</td>
<td>Title</td>
<td>Author(s)</td>
<td>Comment</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>---</td>
<td>--</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>2-1</td>
<td>Mechanical behaviour of unsaturated pyroclastic soils</td>
<td>Evangelista, E. and A. S. di Santolo</td>
<td></td>
</tr>
<tr>
<td>2-2</td>
<td>Susceptibility of loose pyroclastic soils to static liquefaction – some preliminary data</td>
<td>Olivares, L. and L. Picarelli</td>
<td></td>
</tr>
<tr>
<td>2-3</td>
<td>Floods and landslides: Integrated risk assessment</td>
<td>Casale, F. and G. Margottini</td>
<td>Very general..</td>
<td></td>
</tr>
<tr>
<td>2-4</td>
<td>Precipitation-triggered debris-flow at Casita volcano, Nicaragua: Implications for mitigation strategies in volcanic and tectonically active steeplands</td>
<td>Scott, K.M.</td>
<td></td>
</tr>
<tr>
<td>2-5</td>
<td>Initiation and flow of various types of debris-flow</td>
<td>Takahashi, T.</td>
<td></td>
</tr>
<tr>
<td>2-6</td>
<td>Mechanisms of rainfall-induced landslides in Hong Kong</td>
<td>Chen, H., C.F. Lee & J.M. Shen</td>
<td></td>
</tr>
<tr>
<td>2-7</td>
<td>Study on debris-flow triggered by pore water pressure</td>
<td>Chen, R.H. and S.C. Yang</td>
<td></td>
</tr>
<tr>
<td>2-7b</td>
<td>Rainfall and debris-flow occurrence in the Moscardo basin (Italian Alps)</td>
<td>Deganutti, A.M., L. Marchi and M. Arattano</td>
<td></td>
</tr>
<tr>
<td>2-8</td>
<td>Parameters governing debris-flow initiation</td>
<td>Klubertanz, G., L. Laloui and L. Vulliet</td>
<td></td>
</tr>
<tr>
<td>2-9</td>
<td>Role of soil suction in understanding the triggering mechanisms of flow slides associated with rainfall</td>
<td>Tarantino, A. and G. Bosco</td>
<td></td>
</tr>
<tr>
<td>2-10</td>
<td>Threshold criterion for debris-flow initiation due to channel-bed failure</td>
<td>Tognacca, C., G.R. Bezzola and H.-E. Minor</td>
<td></td>
</tr>
<tr>
<td>2-10b</td>
<td>Multiple debris-flows in volcanoclastic materials mantling carbonate slopes</td>
<td>Calcaterra, D., M. Parise, B. Palma and L. Pelella</td>
<td></td>
</tr>
<tr>
<td>2-13</td>
<td>Two debris-flows in Coast Range, Oregon, USA: Logging and public policy impacts.</td>
<td>Squier, L.R. and A.F. Harvey</td>
<td></td>
</tr>
<tr>
<td>2-14</td>
<td>Debris-flow caused by groundwater-surface intersection of fissure water arteries</td>
<td>Tanaka, S., k. Katayama and H. Yamaguchi</td>
<td>Rock, faults, groundwater</td>
<td></td>
</tr>
<tr>
<td>No.</td>
<td>Title</td>
<td>Author(s)</td>
<td>Shear strength/stability</td>
<td>Unsaturated/pyroclastic soil</td>
<td>Erosion</td>
<td>Laboratory tests</td>
<td>Grain size distribution</td>
<td>Initiation of slide</td>
<td>Theor./empiric flow study</td>
<td>Case study</td>
<td>Model testing</td>
<td>Hydrology</td>
<td>Rainfall</td>
<td>General, landslides risk</td>
<td>Volcano collapse</td>
<td>Other</td>
<td>Comment</td>
</tr>
<tr>
<td>-----</td>
<td>---</td>
<td>---</td>
<td>--------------------------</td>
<td>-----------------------------</td>
<td>---------</td>
<td>-----------------</td>
<td>------------------------</td>
<td>-------------------</td>
<td>--------------------------</td>
<td>-----------</td>
<td>----------------</td>
<td>-----------</td>
<td>----------</td>
<td>------------------------</td>
<td>---------------------</td>
<td>-------</td>
<td>---------</td>
</tr>
<tr>
<td>2-16</td>
<td>Landslide induced debris-flow at a dump site</td>
<td>Chou, H.-T., W. M. Liao & M. L. Lin</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td>Fill area</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-16b</td>
<td>Debris-flow activity in Transcarpathia due to heavy rains in autumn 1998</td>
<td>Tischkenko, A. S.</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>Very verbal</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-17</td>
<td>A debris-flow disaster on the fan of the Harihara River, Japan</td>
<td>Nakagawa, H., T. Takahashi and Y. Satofuka</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>Deposition of sediments</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-18</td>
<td>Experimental analysis of the general features of uniform debris-flow over a loose bed</td>
<td>Armanini, A., L. Fraccarollo, L. Guarino, R. Martino and Y. Bin</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-18b</td>
<td>Management of landslides triggered by a major storm event in Wollongong, Australia</td>
<td>Flentje, P. N., R. N. Chowdury and P. Tobin</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-19</td>
<td>Calibration of a runout prediction model for debris-flows and avalanches</td>
<td>Ayotte, D. and O. Hungr</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>Runout</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-20</td>
<td>Debris-flow grain size analysis</td>
<td>Znamensky, D. and M. F. Gramani</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-21</td>
<td>Hydrometeorological and site factors contributing to disastrous debris-flows in Taiwan</td>
<td>Cheng, J. D., R. R. Su and H. L. Wu</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-22</td>
<td>Debris-flow initiation experiments using diverse hydraulic triggers</td>
<td>Reid, M. E., R. G. LaHusen and R. M. Iverson</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-23</td>
<td>Debris-flow initiation by channel-bed failure</td>
<td>Tocnacca, C. and G. R. Bezzola</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-24</td>
<td>A debris-flow triggered by a soil slip on Elba Island, Italy</td>
<td>Iotti, A. and A. Simoni</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>Deposition, boulders</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-25</td>
<td>Kinetic analysis on the deceleration and deposition processes of viscous debris flows</td>
<td>Kang, Z.</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-26</td>
<td>Automated, reproducible delineation of zones at risk from inundation by large volcanic debris flows</td>
<td>Schilling, S. P. and R. M. Iverson</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>LAHARZ program</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-29</td>
<td>Normalized rheological behaviour of fine muds and their flow properties in a pseudoclastic regime.</td>
<td>Locat, J.</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>Atterberg limits i.e.</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-30</td>
<td>Yield stress of granular material</td>
<td>Deganutti, A. M. and P. Scotton</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>Yield stress</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-30b</td>
<td>Yield stress of debris flow slurry</td>
<td>Xiong, G., X. Fei and Z. Kang</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>Yield stress</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-31</td>
<td>Eruption, debris flow and hydrogeomorphic condition at Mount Unzen</td>
<td>Xiong, G., X. Fei and Z. Kang</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No.</td>
<td>Title</td>
<td>Author(s)</td>
<td>Shear strength / stability</td>
<td>Unsaturated/pyroclastic soil</td>
<td>Erosion</td>
<td>Laboratory tests</td>
<td>Grain size distribution</td>
<td>Initiation of slide</td>
<td>Theor./empiric flow study</td>
<td>Case study</td>
<td>Model testing</td>
<td>Hydrology</td>
<td>Rainfall</td>
<td>General, landslides risk</td>
<td>Volcano collapse</td>
<td>Comment</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>--</td>
<td>---</td>
<td>---------------------------</td>
<td>-------------------------------</td>
<td>---------</td>
<td>-----------------</td>
<td>-------------------------</td>
<td>-------------------</td>
<td>-----------------------------</td>
<td>------------</td>
<td>----------------</td>
<td>----------</td>
<td>----------</td>
<td>--------------------------</td>
<td>-------------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>2-32</td>
<td>Constitutive equations of debris flow and their applicability</td>
<td>Egashira, S., K. Miyamoto and T. Itoh</td>
<td></td>
</tr>
<tr>
<td>2-33</td>
<td>On the importance of mud and debris flow rheology in structural design</td>
<td>Julien, P. Y. and J. S. O’Brien</td>
<td></td>
<td>Structures</td>
<td></td>
</tr>
<tr>
<td>2-34</td>
<td>Mechanical characteristics of debris flow deposits</td>
<td>Zhang, J. and G. Xiong (x)</td>
<td>(x)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Impact from debris flow</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-35</td>
<td>Two debris flows with anomalously high magnitude</td>
<td>Jakob, M., O. Hungr and B. Thomson</td>
<td></td>
<td>Use</td>
<td></td>
</tr>
<tr>
<td>2-36</td>
<td>Erosion and sedimentation in Mount Pinatubo rivers, Philippines</td>
<td>Zimmermann, M. and D. Rickenmann</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>2-37</td>
<td>Ability of muddy debris to remain mobile at low flow rates</td>
<td>Martosudarmo, S. Y. and A. M. Johnson</td>
<td></td>
<td>Support of large clasts</td>
<td></td>
</tr>
<tr>
<td>2-38</td>
<td>Velocity profile assessment for debris flow hazards</td>
<td>Hamilton, D. and S. Zhang</td>
<td></td>
</tr>
<tr>
<td>2-39</td>
<td>Comparison of debris flow modelling approaches</td>
<td>Rickenmann, D. and T. Koch</td>
<td></td>
<td>var. models</td>
<td></td>
</tr>
<tr>
<td>2-40</td>
<td>Geoscience and geotechnical engineering aspects of debris-flow hazard assessment</td>
<td>Dietrich, W. E. and N. Sitar</td>
<td></td>
<td>Effect of roots</td>
<td></td>
</tr>
<tr>
<td>2-41</td>
<td>Acoustic detection sensor for debris flow</td>
<td>Itakura, Y., Y. Koga, J.-i. Takahama and Y. Nowa</td>
<td></td>
<td>Acoustic detection</td>
<td></td>
</tr>
<tr>
<td>2-42</td>
<td>Gradually varied debris along a slope</td>
<td>Di Silvio, G. and C. Gregoretti</td>
<td></td>
</tr>
<tr>
<td>2-43</td>
<td>Using hydroscience and hydrotechnical engineering to reduce debris flow hazards</td>
<td>Davies, T. R. H.</td>
<td></td>
<td>(Bingham..)</td>
<td></td>
</tr>
</tbody>
</table>
Appendix D - List of References on Rainfall as Trigger for Landslides
Rainfall-triggered landslides: a reference list

P. De Vita · P. Reichenbach
with contributions by I. C. Bathurst · M. Borga · C. Crozé · T. Glade
F. Guzzetti · A. Hansen · J. Wasowski

In preparing this special issue of Environmental Geology, authors and reviewers pointed out that the literature on the subject of rainfall-triggered mass movements is vast and scattered in journals, books, proceedings, internal and technical reports pertaining to the realm of different sciences: geomorphology, hydrology, hydrogeology, soil science, pedology, agronomy, and forestry among others. This limits our ability to get an overall understanding of what is known or available on the subject. We compiled a list of the available literature that rapidly grew to more than 450 entries. The list was compiled by searching through the international as well as national literature.

Care was taken to include, where possible, references pertaining to the "grey" literature, such as that available from government and research institutions. These internal or technical reports, often unpublished, contain valuable information that remains largely unknown to the international scientific community. The reference list is comprehensive but by no means exhaustive. It contains references covering a variety of topics. Among the most important for the subject of this volume are: types, patterns, and causes of widespread landsliding; hydrological and hydrogeological causes of diffused landsliding; modelling slope groundwater response to rainfall; significance, role, extent, and availability of thresholds; scaling up versus scaling down; regionalization of detailed information on single slopes to larger catchments; usefulness of thresholds for the evaluation and mitigation of landslide hazard and risk.

Received: 18 May 1997 · Accepted: 25 June 1997

P. De Vita · P. Reichenbach · F. Guzzetti
CNR-BIT Perugia, via della Madonna Alta 126, I-06128 Perugia, Italy
Tel.: +39 075 050 4943 · e-mail: F.Guzzetti@lipi.pg.cnr.it

J. C. Bathurst
Department of Civil Engineering, University of Newcastle, NE1 7RU, UK

M. Borga
DIE SAF, AGRIPOLIS, via Romara, I-35020 Legnaro, Italy

G. Crosta
Dipartimento di Scienze della Terra, via Mangiagalli 34, I-20133 Milano, Italy

M. Crozé · T. Glade
Research School of Earth Science, Dept Geography, Victoria University, PO Box 600, Wellington, New Zealand

A. Hansen
47A Goldsworthy Rd, WA-6010, Australia

J. Wasowski
CNR-CERIST, via Orabona 4, I-70125 Bari, Italy

Amaranthus MG, Rice RM, Barr NR, Ziemer RR (1985) Logging and forest roads related to increased debris slides in southwestern Oregon. J Forest 83:229-233

Anderson MG, Kemp M, Lloyd DM (1988) Applications of soil water finite difference models to slope stability problems. 5th Int Symp Landslides, Lussanne, pp 525-530

Environmental Geology 35 (2-3) August 1998 · © Springer-Verlag 219
Au SWC (1993) Rainfall and slope failure in Hong Kong. Eng Geol 56:141-147
B
Bartarya SK, Valdyasi KS (1989) Landslides and erosion in the

Boulut DS (1985) Deslavage of landslide, flash flood, and debris flow hazards in Utah. Gen Ser Rep UWRG-85/03, Utah Water Research Laboratory, Utah State University, Logan (Utah), pp 153-162
Benson WN (1946) Landslides and their relation to engineering in the Dunedin District, New Zealand. Econ Geol 41:328-347

Environmental Geology 35 (2-3) August 1998 · © Springer-Verlag

C

Calder IR, Newson MD (1979) Land use and upland water resources in Britain - a strategic look. Water Resour Bull 15:1628-1639
Campbell DA (1951) Types of soil erosion prevalent in New Zealand. Assoc Int Hydrol Soci 2:82-95
Campbell DA, Anaru ST (1964) Stabilising slip-eroded slopes: farming and forestry at Tangio. Soil Water 2:5-10
Campbell RH (1973) Soil slips, debris flows, and rainstorms in the Santa Monica Mountains and Vicinity, Southern California. US Geol Surv Prof Paper 851
Cannon SH, Ellen SD (1985) Rainfall conditions for abundant debris avalanches, San Francisco Bay Region, California. Calif Geol 38:12267-12272
Castellani L, Castelli F (1996) Un modello probabilistico distribuito dei frammenti superficiali durante eventi meteorologici
D

E

Erkoline DF (1973) Landslides in the vicinity of the Fort Randall Reservoir, South Dakota. US Geol Surv Prof Paper 675

Environmental Geology 33 (2–3) August 1996 · © Springer-Verlag

Environmental Geology 35 (2-3) August 1998 · © Springer-Verlag

Grange LJ, Gibbs HS (1948) Soil erosion in New Zealand. Part 1: southern half of the North Island. Soil Bureau, New Zealand Department of Scientific and Industrial Research, Soil Bureau Bull No 1

Guzzetti F., Cardinale M., Reichenbach P. (1996) Map of sites affected by landslides or floods – the AVI Project. CNR-GNDCI, Pub No 1346

H

Haneberg WC (1991) Observation and analysis of pore pressure fluctuation in a thin colluvium landslide complex near Cincinnati, Ohio. Eng Geol 31:159–184

Hicks DL (1989) Some evidence that erosion is probabilistic. Land and Soil Sciences, Dept Sci Ind Res, Wellington (New Zealand), Land Resour Tech Record LH13

Hicks DL (1989) Storm damage to bush, pasture and forest: some evidence from Cyclone Bola. Dept Sci Ind Res, Wellington (New Zealand), Land Resour, Tech Record LH15

Hicks DL (1990) Landslip damage to hill country under pasture, pine plantation, scrub and bush in Taranaki. Dept Sci Ind Res, Wellington (New Zealand), Land Resour, Tech Record LH3

I

J

Jones PO (1973) Landslides of Rio de Janeiro and the Serra das Araras escarpment, Brazil. US Geol Surv Prof Pap 667D–277

K

L

Langford RJ, Hadley D (1990) New debris flow on the flanks of Tszing Shan, Hong Kong. Geol Soc Hong Kong Newsl 8(3):2-12
Li Tianchi, Li Minghua (1985) A preliminary study on slides triggered by heavy rainfall. Int Symp Erosion debris flows and disaster prevention, Tsukuba
Lumb P (1962) Effect of rainstorms on slope stability. Symp Hong Kong Soils, Hong Kong, pp 73-87
Lumb P (1975) Slope failures in Hong Kong. Q J Eng Geol 8:31-65

M

Megahan WF (1986) Recent studies on erosion and its control on forest lands in the United States. Forest Environment and Silviculture, Proceedings 18th IUFWO World Congress, Division 1, Lubljana (Yugoslavia), pp 178-189

Pain CF (1971) Rapid mass movement under forest and grass in the Hunua Ranges, New Zealand. Austr Geogr Stud 9:77-84

Trans Am Soc Agrl Eng 25:1581-1582

Robertson NG (1964) The frequency of high-intensity rainfalls in New Zealand. New Zealand Meteorol Service, Misc Pub 118

Robertson NG (1976) Recent work on high-intensity rainfalls in New Zealand. New Zealand Meteorol Service

Sakellariadi E, Scarpelli G, Pigliapoco M (1996) Earth move- ments caused by rain infiltration along a slope in overconsol-
Scott KM, Williams RP (1978) Erosion and sediment yields in the transverse ranges, southern California. US Geol Surv Prof Paper 1030
Stariker L (1972) The role of catastrophic rainfall in the shaping of the relief of the Lower Himalaya (Darjeling Hills). PAN, Geogr Polon 21:103–147
Stariker L (1979) The role of extreme meteorological events in the shaping of mountain relief. Geogr Polon 41:13–20
Takei A, Hura H (1992) Critical rainfall conditions on the oc-
currence of debris flow. Int Symp Interprevention 1992, Bern, pp
133–151
Takei A, Suzuki M (1986) The critical rainfall for the occurrence of
sediment disaster. Trans 13th Sym Natural Disaster
Science
Tanaka K, Okura H (1990) Site prediction of slope failure by
heavy rainfall. In: Cancelli A (ed) ALPS 90, 6th Int Conf Field
Workslandslides, September 1990, Milan, pp 101–110
Office, Civil Eng Dept, Hong Kong, GEO Rep No 14
Terlien MTT (1990) Modelling spatial and temporal variations in
rainfall-triggered slides. IFC Publ 32, Enschede, Nether-
lands
Terlien MTJ, Asch TWJ van, Weston CJ van (1995) Determinis-
tic modelling in GIS-based landslide hazard assessment. In:
Carrara A, Guzzetti F (eds) Geographical information system in
Thiel K (1989) Kustallations flussowych stokow karkspanch
 przez ruchy masowe, na przykladzie badan na stoku Bystrzy-
ca w Szymarku. Polaka Aldad Nak (Inst Budownictwa Wod-
nego w Gdansku, praca 17–51 (in Polish)
Thiel K, Zabulska I. (1979) The effect of atmospheric fall on
the development of slide movements on flshy slopes. In: Superfi-
cial mass movements in mountain regions. Inst Meteorol
Gospod Wodny, Warsaw, pp 164–173
Tominaga M (1985) Dynamical changes of soils-water content
 corresponding to the pattern of rainfall and its implication in
the occurrence of ground failure. Proc 4th Int Conf Field
Workslandslides
Trustrum NA, DeRose RC (1988) Soil depth-age relationship of
landslides on deformed hilltops, Taranaki, New Zealand.
Geomorphol 1:143–160
Tsubakimoto Y, Kusakabe O (1984) Vegetative influences on de-
bris slide occurrences on steep slopes in Japan. Proc Symp
Effects forest land use on erosion and slope stability, environ-
ment and policy institute, East-West Center, Honolulu, Ha-
waii
Tsubakimoto Y, Ohita T, Noguchi H (1982) Hydrological and geo-
morphological studies of debris slides on forested hilltops
in Japan. In: Recent developments in the explanation and
prediction of erosion and sediment yield. Proc Exeter Symp
Int Assoc Hydrol Sci Pub No 137, pp 89–98

V
Vandine DF (1985) Debris flows and debris torrents in the
southern Canadian Cordillera. Can Geotech J 22:64–68
Vine MH, Matthews JL (1982) Landsliding in Waitako: an eye-
1981, Napier, Hauraki Catchment Board 2(2):Appendix 2

W
Wells WG (1987) The effects of fire on the generation of debris
flows in Southern California. In: Costa R, Wieczorek GF
(eds) Debris flows/avalanches: processes, recognition and mi-
Wells WG, Wohlgemuth PM, Campbell AG, Weirich FH (1987)
Post-fire sediment movement by debris flows in the Santa
Ynez Mountains, California. In: Beschta RL, Blinn T, Grant GE,
Swanson PJ, Ice GG (eds) Erosion and sedimentation in
the Pacific Rim. Proc Corvallis Symp August 1987, Int Assoc
Hydrol Sci Pub No 165:275–276
Whitehouse IE (1985) The frequency of high-intensity rainfalls
Zeal 15:213–228
Wickremesekera K, Sinnathamy R (1994) Some rainfall induced
landslides in Sri Lanka and criteria for early warning. Proc
Nat Symp Landslides in Sri Lanka, pp 17–19
Wicks JM (1988) Physically based mathematical modelling of
catchment sediment yield. PhD thesis. University of Newcas-
tle upon Tyne, UK
Wieczorek GF (1987) Effects of rainfall intensity and duration on
debris flows in central Santa Cruz Mountains, California.
In: Costa JR, Wieczorek GF (eds) Debris flows/avalanches:
processes, recognition and mitigation. Geol Soc Am Rev Eng
Geol 7:93–104
Wieczorek GF (1987) Landslide erosion in central Santa Cruz
Mountains, California, USA. In: Beschta RL, Blinn T, Grant GE,
Swanson PJ, Ice GG (eds) Erosion and sedimentation in the
Pacific Rim. Proc Corvallis Symp August 1987, Int Assoc
Hydrol Sci Pub No 165:489–498
Wieczorek GF (1996) Landslide triggering mechanism. In: Tur-
ner S (eds) Landslides investigation and mitigation. Tran
port Res Board Special Rep 247:76–90
Wieczorek GF, Sarmiento J (1983) Significance of storm inten-
sity-duration for triggering of debris-flows near La Honda,
California. Am Geol Soc Abs Programs 15:289
Wieczorek GF, Sarmiento J (1988) Landslides, floods and mar-
ine effects of the storm of Jan 3–5, 1982 in the San Francisco
Bay region, California. Reinfal and piezometric levels and
debris flows between 1975 and 1983 near La Honda, in storms
between 1975 and 1983. US Geol Surv Prof Paper 1434:43–63
Wieczorek GF, Sarmiento J (1988) Reinfal, piezometric levels
and debris flow near La Honda, California. US Geol Surv
Prof Paper 1434:43–62
Wieczorek GF, Lips EW,ollen SD (1989) Debris flows and hy-
perconcentrated floods along the Wasatch Front, Utah, 1983
Wiggins WT, Meurs JC (1990) Predicting future or past
ground-water levels for slope stability analysis of landslides.
In: Bonnard C (ed) Landslides. Balkema, Rotterdam, pp 1473–
1475
Williams GF, Guo HP (1973) Erosional and depositional aspects
of hurricane Camille in Virginia, 1969. US Geol Surv Prof
Paper 804
groundwater flow to storm runoff and high pore pressure de-
velopment in hollows. In: Beschta RL, Blinn T, Grant GE,
Swanson PJ, Ice GG (eds) Erosion and sedimentation in the
Pacific Rim. Proc Corvallis Symp August 1987, Int Assoc Hy-
drol Sci Pub No 165, pp 49–59
Wilson RC (1986) Estimating rainfall required to initiate debris
flows. Assoc Eng Geol Ab Programs
Wilson RC (1989) Rainstorms, pore pressures, and debris flows:
a theoretical framework. In: Sadler PM, Morton DM (eds)
Landslides in a semi-arid environment. Publications of the
Inland Geological Society, Riverside, California, 2:101–117
Wilson RC, Wieczorek GF (1995) Rainfall thresholds for initia-
tion of debris flows at La Honda, California. Environ Eng
Geosci 1:11–27
Wilson RC, Torikai JD, Ellen SD (1992) Development of rainfall
warning thresholds for debris flows in the Honolulu District,
Oahu. US Geol Surv Open File Rep 92–521
Wilson RC, Mark RE, Barbato G (1993) Operation of a real-
time warning system for debris flows in the San Francisco
Bay area, California. In: Shen HW, Su ST, Wen F (eds) Hy-

Environmental Geology 35 (2–3) August 1998 © Springer-Verlag
Appendix E - Some Important Textbooks

Schuster, R.L. and Krizek, R.J. eds. (1978)

Zaruba, Q. and Mencl., V. (1982)

Morgenstern, N.R. (1992)

ISL (2000)
Proceedings of the 8th International Symposium on Landslides, Cardiff, U.K., Thomas Telford (Symposium held every 4th year).
Appendix F - Useful Web Sites
CALIFORNIA GEOLOGICAL SURVEY - LANDSLIDES
http://www.consrv.ca.gov/cgs/geologic_hazards/landslides/

FEMA: Fact Sheet: Landslides and Mudflows
http://landslides.usgs.gov/

Geologic Hazards--Landslides (USGS)
http://landslides.usgs.gov/

USGS Landslides
http://www.usgs.gov/themes/landslid.html

US National Landslide Information Center -- NLIC

The Natural Hazards Center - Boulder, Colorado - Information on Human Adaptation to Disaster
http://www.colorado.edu/hazards/index.htm

Terrain Inventory - Terrain Stability Hazards
http://srmwww.gov.bc.ca/rib/wis/terrain/publications/stability/chapter2.htm

US Global Change Research Information Office (global warming)
http://www.gcrio.org/index.shtml

Landslide in Japan Home Page
http://www.tuat.ac.jp/~sabo/lj/

SGI - Swedish Geotechnical Institute
http://www.swedgeo.se/index-e.html

Geological Seismic and Soil Survey, Assessorato programmi d'area, Qualità Edilizia, Sistemi informativi e telematici, Organizzazion
http://www.regione.emilia-romagna.it/geologia/eindex.htm

Neural Networks for Landslides (Tomas Fernandez-Steeeger)
http://www.gknk.uni-kalsruhe.de/tomas/Project.shtml

Italian landslides photos
http://www.geocities.com/RainForest/8211/

IMIRLAND Landslide Project, Italy
http://extranet.regione.piemonte.it/imiriland/
Landslide Slide Show - Kingston University, UK
http://www.kingston.ac.uk/~ku00323/landslid/slides.htm

Japan
http://icl.dpri.kyoto-u.ac.jp/

Landslides - Bibliographic databases (free search)

Earthquake Engineering Abstracts (EEA)
http://nisee.berkeley.edu/eea.html

SGI Line
http://www.swedgeo.se/login/signin.asp
Protective Measures to Reduce the Landslide Risk in El Salvador. Literature on Landslides

Oppdragsgiver/Client
Ministry of Foreign Affairs, Norway

Kontraktsreferanse/Contract reference

Dokumenttittel/Document title
Protective Measures to Reduce the Landslide Risk in El Salvador. Literature on Landslides

Prosjektleder/Project Manager
Oddvar Kjekstad

Utarbeidet av/Prepared by
Christian Jaedicke, Wenche Enersen

Emneord/Keywords
Landslides, lahars, NGI landslide literature

Land, fylke/Country, County
El Salvador

Kommune/Municipality

Sted/Location

Kartblad/Map

UTM-koordinater/UTM-coordinates

Quality assurance according to NS-EN ISO9001

<table>
<thead>
<tr>
<th>Kontrollert av/Reviewed by</th>
<th>Kontrolltype/Type of review</th>
<th>Dokument/Document</th>
<th>Revisjon 1/Revision 1</th>
<th>Revisjon 2/Revision 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>FS</td>
<td>Helhetsvurdering/General Evaluation *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FS</td>
<td>Språk/Style</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FS</td>
<td>Teknisk/Technical</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Skjønn/Intelligence</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Total/Extensive</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Tverrfaglig/Interdisciplinary</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS</td>
<td>Utforming/Layout</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OK</td>
<td>Slutt/Final</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JGS</td>
<td>Kopiering/Copy quality</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Gjennomlesning av hele rapporten og skjønnsmessig vurdering av innhold og presentasjonsform/On the basis of an overall evaluation of the report, its technical content and form of presentation

Dokument godkjent for utsendelse/Document approved for release

<table>
<thead>
<tr>
<th>Dato/Date</th>
<th>Sign.</th>
</tr>
</thead>
</table>

Oppdragsgiver/Client
Ministry of Foreign Affairs, Norway

Kontraktsreferanse/Contract reference

Dokumenttittel/Document title
Protective Measures to Reduce the Landslide Risk in El Salvador. Literature on Landslides

Prosjektleder/Project Manager
Oddvar Kjekstad

Utarbeidet av/Prepared by
Christian Jaedicke, Wenche Enersen

Emneord/Keywords
Landslides, lahars, NGI landslide literature

Land, fylke/Country, County
El Salvador

Kommune/Municipality

Sted/Location

Kartblad/Map

UTM-koordinater/UTM-coordinates

Quality assurance according to NS-EN ISO9001

<table>
<thead>
<tr>
<th>Kontrollert av/Reviewed by</th>
<th>Kontrolltype/Type of review</th>
<th>Dokument/Document</th>
<th>Revisjon 1/Revision 1</th>
<th>Revisjon 2/Revision 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>FS</td>
<td>Helhetsvurdering/General Evaluation *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FS</td>
<td>Språk/Style</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FS</td>
<td>Teknisk/Technical</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Skjønn/Intelligence</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Total/Extensive</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Tverrfaglig/Interdisciplinary</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS</td>
<td>Utforming/Layout</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OK</td>
<td>Slutt/Final</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JGS</td>
<td>Kopiering/Copy quality</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Gjennomlesning av hele rapporten og skjønnsmessig vurdering av innhold og presentasjonsform/On the basis of an overall evaluation of the report, its technical content and form of presentation

Dokument godkjent for utsendelse/Document approved for release

<table>
<thead>
<tr>
<th>Dato/Date</th>
<th>Sign.</th>
</tr>
</thead>
</table>